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Summary 
 
This chapter presents an overview of the most important classes of nonlinear models 
and their practical methods of identification using measured input/output data. Since it 
is impossible to include all methods proposed in literature during the past three decades, 
only the most important methods for establishing parametric, nonparametric, semi-
parametric and specific nonlinear models are discussed. The corresponding methods for 
identifying the parameters as well as the structure of nonlinear models are described. 
Finally these nonlinear identification methods are critically compared with one another 
in terms of some most important practical issues. 
 
1. Introduction 
 
The behavior of dynamic systems can be described by models. Such models are used for 
the purposes of 
 

• prediction, 
• explanation, 
• process optimization, 
• training process operators, 
• fault detection, 
• controller design 
• etc. 

 
Using a prediction model the energy consumption or product demand in technical sys-
tems can be forecasted. An explanation model can be applied to study the internal or 
external behavior of a critical technical or nontechnical system, especially in the case, 
when experiments cannot be conducted or are too expensive, such as a chemical reactor 
or a biological or economical system. For process optimization the real system is some-
times simulated by a dynamic model. 
 
 This model can be used under different operating conditions as a decision support for 
the operator or in training of process operators. Dynamic models are nowadays often 
used in fault detection, where the measured process behavior is compared with known 
models. The design of most modern control systems is based on dynamic models de-
scribing the input/output (I/O) behavior of the process to be controlled.  
 
There are still other applications for dynamic models, as for example, in observers or 
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filters for measuring states which cannot be measured directly, or models combined 
with intelligent sensors for reducing measuring time. 
 
Dynamic models describing a dynamic system can be derived using first-principles of 
physics, chemistry, biology, economy etc. Because of the required special process 
knowledge these “physical” models are usually difficult to obtain. Furthermore, the 
complexity of most real systems, and the missing knowledge of many parameters leads 
to inaccurate models.  
 
An alternative way to obtain a dynamic model is given by what is denoted as system 
identification, which aims at developing mathematical models for dynamic systems us-
ing measured I/O-data. Model building by system identification comprises the selection 
and processing of I/O-data for finding an appropriate model structure and providing the 
corresponding model description in parametric or nonparametric form.  
 
Models obtained from system identification are called black-box models, whereas those 
derived from first-principles are also denoted as white-box models reflecting the com-
plete physical insight about the corresponding real system, wherein all the parameters 
and variables are physically meaningful figures. Models which provide only partial 
physical insight about the real system are defined as grey-box models, and can be con-
sidered as a class of models existing between both extremes of white-box and black-box 
models.  
 
This is, for example, the case when system identification is applied for determining only 
the parameters of a model whose structure is based on first-principles. Then the esti-
mated model parameters may be often also interpreted in physical terms, which hold 
typically for a continuous-time model structure in the form of a differential equation.  
 
However, there are other, similarly motivated models in which the model structure is 
first identified from the I/O-data in a black-box manner, using some generic model, e.g. 
differential or difference equations. Only after this initial black-box stage is the model 
interpreted in physical terms. Both types of modeling have similar objectives, but they 
can result in different models, and the latter often yields a better result. 
 
The aim of system identification consists in developing a parametric or nonparametric 
model purely from measured I/O-data of a real system that reproduces the static and 
dynamic I/O-behavior of the latter subject to external influences as accurately as possi-
ble, even for the case of noise corrupted data. Nonlinear system models are usually 
rather complex. Due to the manifold forms in which nonlinear characteristics occur in 
real systems we also have a vast diversity of nonlinear model forms as discussed in this 
chapter. System identification involves following steps: 
 

1) Data acquisition, 
2) selection or determination of model structure, 
3) parameter estimation, 
4) validation of the identified model. 

 
The data acquisition consists in selecting an appropriate input signal which should per-
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sistently excite the system over the whole range of operation during the experiment. 
Today usually digital measurement equipment is used. Therefore the sampling fre-
quency of the I/O data has to be selected approximately 6 to 10-times the system band-
width. For the selection of the input signal or input sequence two cases have to be con-
sidered: 
 

• Only signals of normal operation of a system are allowed to be used. 
• Application of specific test signals, as for example, a pseudo-random binary 

sequence (PRBS) for linear models and pseudo-random multi-level se-
quences (PRMLS) for nonlinear models is allowed. 

 
The model structure can be obtained either from prior knowledge about the system or 
by application of specific statistical criteria. Often trial and error methods also provide 
an acceptable model structure. Parameter estimation provides the values of the un-
known parameters in a parametric model structure.  
 
Several methods are available which will be discussed later in more detail. Finally the 
validation of the identified model can be performed by simulating and evaluating the 
I/O behavior of the model applying as input signal a data set different from that used for 
the identification.  
 
The identification steps discussed above represent usually some compromise between 
the expected model accuracy and the mathematical efforts necessary to obtain the 
model. 
 
There are several categories of mathematical models to be distinguished: 
 

• static and dynamic models, 
• parametric and nonparametric models, 
• continuous-time and discrete-time models, 
• deterministic and stochastic models, 
• lumped parameter and distributed parameter models, 
• knowledge (or phenomenological) and representation models, and 
• linear and nonlinear models. 

 
Static mathematical models are applied to describe the steady-state or static I/O behav-
ior of a system using the nonlinear static characteristic 
 
y f (u)= , (1) 
 
where u is the system input variable and y the corresponding output variable, respec-
tively in the steady-state, and both are usually also dependent on time t. Table 1 in-
cludes some of the most important nonlinear static characteristics. 
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Table 1. Some typical nonlinearities 
 
The dynamic behavior of a mathematical model can be characterized by a parametric, 
nonparametric or semi-parametric description. A parametric model is given, for exam-
ple, either by 
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• a differential equation representing a continuous-time model, 
• a difference equation representing a discrete-time model, 
• a continuous or discrete state-space representation, 

 
all having a linear or nonlinear structure, or in the linear case, by 
 

• a transfer function G(s)  or a frequency response function G( j )ω  for single 
input/single output (SISO-) systems or 

• a transfer matrix (s)G  for multi input/multi output (MIMO-) systems. 
 
A nonparametric model is represented, for example, in a graphical or tabular form, such 
as curves or tables of step or impulse responses, frequency response plots, spectral dis-
tributions, integral kernels etc. In between the extreme forms of parametric and non-
parametric models there are models which cannot strictly be included in any of these 
two classes and they have been denoted since more than a decade as semi-parametric 
models. 
 
 These models cover the recently emerging classes of models based on Fuzzy logic sys-
tem (FLS) as well as neuro-fuzzy networks (NFN), both also allowing for the includsion 
of experimental human knowledge into the modeling process. 
 
If a model of an undisturbed system can be obtained by applying a known and well-
defined input signal, such as a step or ramp function, then it is denoted as a determinis-
tic model. However, if the measured I/O-data of a system represent sequences of ran-
dom variables, for example, caused by either measurement noise or uncontrollable un-
known inputs, then the system can only be modeled by a stochastic model in which, as 
is normal, the estimated parameters are also stochastic variables, defined, for example, 
by the means and covariances (in the case of the ubiquitous Gaussian assumption).  
 
The model realization then consists of stochastic partial models for the system and the 
disturbances. 
 
Models described by ordinary differential equations relating their I/O behavior are usu-
ally defined as lumped parameter models, whereas models involving partial differential 
equations are denoted as distributed parameter models. Another, rather unconventional 
way for distinguishing models is to call those based on first-principles or phenomenol-
ogical considerations as knowledge models and those derived from measured I/O-data 
representation models. 
 
The distinction between linear models and nonlinear models is mainly based on the fact 
that for nonlinear models the principle of superposition does not hold. According to this 
principle a system model is called linear, if the response produced by the simultanous 
application of two (or more) different forcing functions at the input provides an output 
signal consisting of the sum of the two (or more) individual responses. There are also 
specific test methods that aim at detecting nonlinearities.  
 
However, an easy and rough nonlinearity test exists in examining a scatter plot of the 
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output y(t)  versus the input du(t T )−  in steady-state, where dT  represents the ap-
proximate delay between u(t)  and y(t) , which often can be estimated from some avail-
able a-priori knowledge. In low noise situations, such a scatter plot may already reveal 
important information about the nonlinearity. 
 
Real-life systems are usually nonlinear and may also exhibit effects of time-varying and 
distributed parameters. These systems can often be approximated in a small range 
around a specific operating point by a linear model. In order to obtain a model for de-
scribing the whole operating range either a linear multi-model, consisting of a set of 
linear models each for a specific operating point often also denoted as local linear mod-
els, or more general nonlinear models should be applied.  
 
There are nonlinear models of many types, such as I/O-models, state-space models, 
block-oriented models, convolution-type models etc. There is no general nonlinear 
model type available for all applications. Therefore the choice of the model type is de-
pendent on each individual application. For the purpose of system identification, several 
modeling frameworks have been suggested. Various approaches for modeling and iden-
tification of nonlinear systems are divided according to Figure 1, into the following ma-
jor groups: 
 

• parametric models, 
• nonparametric models, 
• semi-parametric models and 
• linear multi-models. 

 
This contribution presents an overview of these nonlinear modeling approaches and 
compares them with one another in terms of practical aspects. This discussion can only 
address the main issues and the list of references is of course not complete, since only 
the most significant references can be included. 
 
2. Parametric Models 
 
Parametric models provide a very compact representation of dynamical systems in the 
form of difference or differential equations. Their parameters often have physical sig-
nificance, especially in case of continuous-time systems. In this section, the most com-
monly used discrete-time and continuous-time parametric models will be considered. 
Besides very general models, models with special structures are often employed de-
pending on the problem at hand.  
 
In the case of discrete-time models usually the identification consists in establishing a 
black-box model, whereas for continuous-time modeling either a black-box model prob-
lem or more often a grey-box model problem has to be solved. During the last three 
decades a very rich mathematical framework for black-box modeling of linear systems 
has been established, and most of these techniques are also available in professional 
software packages, such as MATLAB. The last decade was especially characterized by 
a considerably increasing interest for nonlinear system identification.  
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However, it should be mentioned that nonlinear function approximation has already 
been of great interest in classical regression analysis of statistics since long time. There-
fore this section will start with the very important class of parametric discrete-time re-
gression models. 
 

 
 

Figure 1: Most important nonlinear model structures 
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